
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 •  IEEE ROBOTICS & AUTOMATION MAGAZINE

I
n modern manufacturing plants, automation is widely 
adopted in the production phases, which leads to a high 
level of productivity and efficiency. However, the same 
level of automation is generally not achieved in logistics, 
typically performed by human operators and manually 

driven vehicles. In fact, even though automated guided 
vehicles (AGVs) have been used for a few decades for goods 
transportation in industrial environments [1], they do not yet 
represent a widespread solution and are typically applied only 
in specific scenarios.

A remarkable example is the Amazon Robotics system 
[2], in which AGVs are utilized for logistics in e-commerce 
warehouses. While this solution is very effective for this kind 
of application, it is worth noting that it can not be directly 
applied to material handling in generic factories. What 
makes this system unique is that the AGVs move in a 

constrained environment, where other entities are not 
allowed [3]. This makes the system not applicable to mixed 
environments shared by human operators, manually  driven 
vehicles, and AGVs ( Figure 1).

In this article, we present the main technological devel-
opments achieved during the Plug and Navigate (PAN)-
Robots project (http://www.pan-robots.eu), which aimed 
at increasing the autonomy and efficiency of AGVs used 
for industrial logistics in environments shared with 
human operators. The main contribution of this article is 
to provide a system-level overview of those achievements, 
demonstrating how they can contribute in increasing the 
applicability of AGV systems.

Scenario and Related Works
In this article, we consider AGV systems used for transport-
ing pallets of goods in automated warehouses, as shown in 
Figure 2. Specifically, we focus on common manufacturing 
plants characterized by large production batches, such as 
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beverage companies. Typically, in these environments, a few 
tens of vehicles are utilized for goods transportation (from the 
production machines to the warehouse, within the warehouse 
itself, or to the shipment area). While traditional installations 
 consist of manually driven forklifts, advanced solutions based 
on AGVs are becoming increasingly popular [4].

In these applications, AGVs share the environment with 
other entities, such as pedestrians (i.e., human operators) and 
manually driven vehicles (e.g., forklifts) [5], [6]. As a conse-
quence, safety concerns are of paramount importance; the 
environment is populated with dynamic entities, and avoid-
ance of collision needs to be guaranteed. A typical solution 
for achieving this objective is in the use of safety laser scan-
ners [7], which allow each AGV to detect the presence of 
obstacles in its vicinity and opportunely stop to avoid 
 collisions or replan the path to be traveled [8]. As discussed 
in [9], safety laser  scanners do not allow AGVs to classify 
 detected obstacles and, subsequently, to make high-level 
decisions, such as stopping in the presence of a human 
(whose behavior is unpredictable) and  circumventing a box 
(which does not move).

Computer-vision-based techniques for dynamic obstacle 
detection have been extensively studied in the last few years, 
particularly in the context of autonomous vehicles [10], [11]. 
Because the environment is populated by human operators, 
illumination is always needed. Hence, techniques based on 
computer vision can be  effectively utilized.

Industrial environments are typically very congested; as 
shown in Figures 1 and 2, AGVs move through corridors and 
racks to collect and deliver pallets of goods. To effectively plan 
the motion of the AGVs and react to unpredictable events 
(e.g., the presence of a pedestrian) in the correct manner, 
multiple viewpoints as well as a global view of the environ-
ment are necessary. A sensing system was introduced in the 
PAN-Robots project that exploits a composition of onboard 
and offboard sensing systems to acquire data from the envi-
ronment that are then gathered in a centralized data fusion 
system (see the “Advanced Sensing System” section).

The motion of the AGVs then needs to be coordinated 
through the environment in such a way that the requested 
missions (i.e., transportation of a pallet of goods from one 
location to another) are fulfilled. Generally, two different phi-
losophies can be followed to coordinate the motion of the 
AGVs: decentralized and centralized. In decentralized coordi-
nation strategies, each vehicle defines its own path indepen-
dently, based on locally available information. Coordination 
among vehicles is then handled locally. While those strategies 
are known to scale well for large-scale fleets [12], [13], they 
typically do not provide a complete solution. Hence, efficien-
cy cannot always be guaranteed. Since, in industrial applica-
tions, the overall efficiency is paramount [4], we consider a 
centralized coordination strategy that also incorporates infor-
mation acquired by the centralized data fusion system. As is 
typically done in industrial applications, the proposed coordi-
nation strategy considers the AGVs constrained to move 
along a road map [14], which is a set of (virtual) paths that let 

the AGVs reach any location of interest in the environment. 
Localization of the AGVs is typically managed by means of 
laser scanners mounted on top of the vehicles themselves, 
which are used to localize the vehicle with respect to a map of 
the environment known a priori [15].

Advanced Sensing System
The advanced sensing system proposed in the PAN-Robots 
project is composed of sensors installed both onboard the 
AGVs and in the infrastructure, as summarized in Figure 3. 
A centralized data fusion module is then in charge of gather-
ing all the acquired information. We describe these modules 
in detail in the following sections.

Onboard Sensing System

Omnidirectional Stereo Camera and Two-Dimensional 
Safety Laser Scanners
The main goal of the onboard system composed of the omni-
directional stereo camera and the two-dimensional (2-D) 

(a)

(b)

Figure 1. (a) and (b) AGVs sharing the environment with human 
operators.

Figure 2. AGVs moving goods in a modern factory warehouse 
with high production volumes.
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safety laser scanners is that of providing three-dimensional 
(3-D) surrounding perception, including object detection, 
tracking, classification, and environment representation. An 
enhanced onboard perception is provided by fusing the omni-
directional stereo 3-D data with the 2-D safety laser scanners’ 
information. In particular, one of the key features is represent-
ed by the detection of protruding and hanging objects.

To provide information about the surroundings of the 
AGV, the omnidirectional stereo camera is mounted at a 
height of approximately 4 m on a pole. Having a vertical field 
of view of approximately 150°, the camera can detect objects 
of a height of 1 m at a distance of around 10 m. The hard-
ware architecture of the omnidirectional stereo-vision 

system, as detailed in [16], consists of a pair of customized 
fisheye lenses, two high-resolution digital cameras, and a 
data-processing unit. The most important components of the 
data-processing unit are the actual custom 3-D vision engine 
control unit, which does the processing, and the NVIDIA 
graphics processing unit (GPU). The GPU’s role is to provide 
real-time dense stereo reconstruction and  elevation map 
computation.

After obtaining the camera position and parameters using 
intrinsic and extrinsic calibration, a multichannel rectification 
is performed, and the fisheye images are split in three differ-
ent channels. The stereo matching and reconstruction algo-
rithms are run on each pair of images, and the 3-D 

Figure 3. The sensing system developed within PAN-Robots is composed of several modules. (a) An omnidirectional stereo camera is 
mounted above the AGV with the purpose of providing information regarding the objects around the AGV itself. (b) In particular, an 
elevation map is extracted and, after data fusion with information gathered by the safety laser scanners, (c) objects are classified and 
tracked. (d) A stereo camera mounted under the AGV forks is utilized for load handling. In particular, it allows (e) detecting pallets 
during picking operations and (f) unloading cuboids for dropping operations. (g) Infrastructure laser scanners mounted on pillars 
(h) allow detecting, tracking, and classifying objects. 

(a)

(d)

(g)

(h)

(b) (c)

(e)

(f)

AGV
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reconstructed points are obtained. To reduce the amount of 
data to be processed and filter the noise from the raw stereo 
data, an intermediate representation is built in the form of 
digital elevation maps (DEMs). A DEM is a 2-D Cartesian 
grid map in which each cell contains the corresponding 
height information. DEMs provide both representation flexi-
bility and compactness and are especially useful in unstruc-
tured environments. They also provide explicit connectivity 
information among cells. Each cell in the DEM is classified as 
corresponding to the road or an obstacle based on the height 
information in that cell [see Figure 3(f)]. Groups of DEM cells 
containing points above the drivable area are labeled as obsta-
cle cells. The neighboring obstacle cells are grouped, and, if 
they form a considerable area, an obstacle is detected. The 
obstacle is represented by a bounding box with certain 
dimensions and orientation. The obstacles are tracked and 
finally classified [see Figure 3(g)], utilizing the methodology 
described in detail in [17].

The laser scanners gather a range profile (scan) of the envi-
ronment. As four scanners are placed around the AGV to have 
different fields of view in all directions, the complete environ-
ment can be observed by fusing all four range profiles of the 
scanners. The map of the warehouse environment, known a 
priori, is combined with the localization results to identify and 
extract regions of interest for object detection. Detected objects 
are tracked and classified. The data resulting from the two 
threads of 2-D perception and 3-D omnidirectional vision are 
fused onboard the AGV by a probabilistic object-level fusion 
approach. The sensor data fusion (described in detail in [18]) 
between the stereo-vision sensor findings and the laser scan-
ner data provides high values of robustness and accuracy for 
detection, tracking, and  classification.

The performance of the perception system was evaluated 
using data acquired in real industrial environments. The first 
experiment consisted in having a static object (in particular, a 
pallet of goods) on the ground detected from a moving AGV. 
More than 700 measurements were taken. In each configura-
tion, the ground truth relative position between the AGV and 
the object was measured by means of laser scanners. It is worth 
noting that, due to the motion of the AGV, a relative velocity of 
the object could be observed as well. Table 1 summarizes the 
achieved results, which show very good precision of the 

tracked measurements. Values are shown in terms of root-
mean-square error (rmse) and  maximum error.

Another experiment consisted in having a second AGV 
(target AGV), moving at a known velocity and orientation, 
that was then measured from the first AGV. The experiment 
was run for five hours, using three levels of velocity and orien-
tation. As summarized in Table 2, in all the considered cases, 
the rmse was less than 0.5 m/s for the velocity and less than 
15° for the orientation.

Classification performance was then assessed acquiring 32 
sequences, each lasting 5 min, that included three classes of 
obstacles: pedestrians, AGVs, and other obstacles. Sequences 
were manually annotated to obtain a ground truth. The sys-
tem was then able to correctly classify the obstacles in more 
than 90% of the cases.

Pallet Loading
A fully automated AGV requires sensors dedicated to load-
handling operations. For this purpose, we implemented a 
machine-vision-based approach that employs both intensity 
information and stereo depth information from two cameras 
mounted near the AGV forks. Stereo cameras are easy to 
install and require only a calibration procedure at installation 
time. Cameras provide a 3-D view of the scene in front of the 
AGV. Analysis of this allows us to perform pallet detection 
with localization and free space detection for unloading oper-
ations.

As shown in [19], pallet detection is achieved by applying a 
sliding window detection method. Relevant candidates are 
selected from the region of interest by analyzing the edges 
found in the input images. Discriminative features are then 
calculated for each candidate. These features are specifically 
designed to be invariant to gain changes to enable precise 
localization and to help discriminate pallets from other objects.

Table 1. The tracking of a static obstacle from a 
moving AGV: 787 measurements.
Parameter rmse Maximum Error

Position error 0.02 m 0.07 m

Velocity error 0.13 m/s 0.68 m/s 

Table 2. The measurement of velocity and orientation of a target AGV.

Target AGVs Orientation

Target AGV Velocity Parameter 0° 90° 135°

0.75 m/s Velocity rmse 0.25 m/s 0.31 m/s 0.14 m/s 

0.75 m/s Orientation rmse 2.90° 7.14° 11.44°

1.2 m/s Velocity rmse 0.21 m/s 0.18 m/s 0.15 m/s 

1.2 m/s Orientation rmse 1.77° 10.86° 10.42°

1.8 m/s Velocity rmse 0.33 m/s 0.19 m/s 0.22 m/s

1.8 m/s Orientation rmse 1.87° 4.87° 3.73°
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Figure 3 shows the results of the proposed approach. In 
particular, Figure 3(d) shows the detection of a pallet that 
allows the AGV to perform a picking operation. Conversely, 
Figure 3(e) depicts the unloading of a cuboid, which allows the 
AGV to perform a dropping operation. The accuracy of the 
system was assessed on a data set of 7,000 images taken in a 
real warehouse. Results are summarized in Table 3 and con-
firm that the proposed system is able to  provide sufficient pre-
cision for performing pallet-handling operations.

Infrastructure-Based Environment Perception 
System
At warehouse black spots, such as intersections, where objects 
are not detectable by the AGV’s onboard safety laser scanners 
due to the occluded field of view, special care has to be taken to 
avoid accidents with dynamic objects, such as pedestrians. A 
simple solution for workers approaching an intersection is a 
hemispherical mirror mounted above the intersection, which 
allows looking for oncoming traffic in the remaining arms of the 
intersection.

Currently, AGVs are programmed to decelerate to half of 
their nominal velocity when approaching intersections, tra-
versing them at this reduced velocity to significantly reduce 
the braking distance in case of workers suddenly appearing in 
the laser scanners’ safety areas, and to reaccelerate when leav-
ing the intersection. This procedure significantly reduces the 
overall efficiency in terms of increased mission time, energy 
consumption, and mechanical wear on the AGV and is 
unnecessary in situations where the intersection is free of 
workers, other vehicles, or obstacles.

The simple solution of the omnidirectional mirror led us 
to the concept of an infrastructure-based environment per-
ception system that monitors all directions of traffic at a black 
spot and communicates the results to approaching AGVs. 
This infrastructure-based cooperative environment percep-
tion system allows the PAN-Robots to reduce the efficiency 
gap. Its objective is to provide the information about the pres-
ence or absence of objects near the monitored intersection to 

each approaching AGV. As detailed in [20], this infrastruc-
ture system detects, tracks, and  classifies all objects in the 
vicinity of the monitored area and communicates this infor-
mation to the control center via  wireless communication.

The performance of the infrastructure sensing system 
was evaluated in a real industrial environment. More than 
1,000 measurements were taken of dynamic objects mov-
ing in the area monitored by the sensing system. Table 4 
summarizes the achieved results, which confirm high 
measurement  precision.

Classification performance was then assessed on the same 
data set, which included three classes of obstacles: pedestrians, 
AGVs, and other obstacles. Data were manually annotated to 
obtain a ground truth. All the obstacles were correctly detected 
in 100% of the cases, and the system was able to correctly classify 
the pedestrians in 100% of the cases and AGVs and other 
 obstacles in more than 90% of the cases. 

Centralized Data Fusion
A hierarchical data fusion technique is implemented as a 
cloud system in the industrial environment. Data fusion is 
necessary because of the presence of different sensing systems 
that simultaneously acquire data, which need to be made 
available to the AGV control system for inclusion into the 
planning and control strategy. Therefore, we introduce a cen-
tralized system that is in charge of receiving data from differ-
ent sources, opportunely merging them, and making them 
available for the AGV control system. This centralized system 
defines a global live view of the environment that contains 
constantly updated information regarding all the entities that 
populate the industrial environment. As a motivating exam-
ple, consider the scenario depicted in Figure 4. In this exam-
ple, an AGV is in the presence of multiple objects as well as 
pedestrians. Based solely on local sensing [Figure 4(b)], the 
AGV is able to identify only a limited portion of the objects in 
its neighborhood. Conversely, when exploiting the global live 
view cloud service [Figure 4(c)], the AGV is provided with 
global information that integrates data acquired by different 
 perception systems.

In the proposed architecture, as detailed in [21], informa-
tion about objects in the scene may be provided by several 
sources, namely, an onboard sensing system, an infrastruc-
ture-based environment perception system, and a 3-D map of 
the environment. Thus, it is possible to experience issues like 
data redundancy, inconsistency, ambiguity, noise, and incom-
pleteness. To overcome this problem, the global live view col-
lects all data acquired by the sensors and combines them in a 
unique and complete representation of the overall system, 
including the static and dynamic entities that act inside it. In 
particular, the global live view allows achieving higher-quality 
information, providing a global updated map representing the 
static entities (the 3-D map of the plant, the road map), the 
dynamic entities (the current position and velocity of the 
AGVs, the position and velocity of currently identified 
objects), the congestion zones, and the status of the 
 monitored intersections.

Table 4. The performance of the infrastructure 
 sensing system: 1,039 measurements.
Parameter rmse Maximum Error

Position error 0.09 m 0.34 m

Velocity error 0.22 m/s 0.31 m/s

Orientation error 3.2° 6.2°

Table 3. The performance of the pallet loading 
 sensing system.
Parameter Value 

Detection accuracy 99%

Distance error (rmse) 6.3 mm

Orientation error (rmse) 0.5°
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Fleet and Traffic Management
Because several AGVs share the same environment, the 
coordination of their motion is a very relevant issue. For this 
purpose, we propose a novel coordination and path-plan-
ning algorithm in the control center that handles the coordi-
nation of the fleet. In particular, the motion of the AGVs is 
coordinated along the road map for optimized mission com-
pletion. To optimize mission completion, from a global point 
of view, it is necessary to develop a methodology for assign-
ing the missions to the AGVs in an optimized manner and, 
subsequently, to coordinate the motion of the AGVs them-
selves. Moreover, in case of unforeseen obstacles, it is neces-
sary to replan the path of the AGVs to avoid collisions with 
the obstacles. Because AGVs are constrained to move along 
the road map, replanning means finding an alternative path 
on the road map itself, which is not always feasible. Consider, 
for instance, the frequent case of unidirectional roads. Thus, 
if an alternative path cannot be found on the road map, the 
AGV gets stuck until the obstacle has been removed. To 
overcome this issue, we propose a method for implementing 
local deviations from the road map. Fleet and traffic manage-
ment includes the following modules: 1) global navigation 
and mission assignment; and 2) local deviation from the 
road map.

Global Navigation and Mission Assignment
This module is in charge of assigning a mission to each AGV 
and coordinating the motion of the AGVs along the road 
map in such a way that the overall fleet performance is 
 optimized. For this purpose, we consider a hierarchical two-
layer strategy: the top layer and the bottom layer [22].

Top Layer
The top layer considers the environment from a macroscopic 
point of view. It is partitioned into sectors, which are bounded 
regions of space, and we subsequently provide a quantitative 
traffic measure. This sector partitioning leads to achieving a 
lumped parameter traffic model that can be used for assigning 
the mission and defining the overall optimal path to be trav-
eled by each AGV. 

For this purpose, we model the set of sectors by means of 
a directed graph ,GT  where each node represents a sector. 

An edge exists in GT  between nodes i  and j  if the thi  sector 
is adjacent to the thj  one. That is, a path on the road map 
exists that is completely contained in ,S Si j,  starting from Si  
and finishing in .S j  A weight can then be assigned to each 
edge to quantify the traffic in each sector. To this aim, we 
define C Ri !

+  as the capacity of the thi  sector Si  that is the 
maximum number of AGVs that can be contained in .Si  
This quantity is proportional to the size of the sector itself.

Let ( )Y ki  be the number of AGVs traveling along a path 
contained in Si  at time .k  The following traffic measure is 
then introduced:

 ( )
( )

( ) .T k
C Y k

Y k
i

i i

i
=

-
 (1)

Namely, a high number of AGVs in a sector (with respect 
to the sector’s capacity) implies high traffic in the sector itself. 
Edge weights can then be defined by the following time-vary-
ing function:

 ( ) ( ) , ,k K T k b b,i j ij j i j~ d= + ^ h  (2)

where ,b bi jd^ h is the distance between the centers of Si  
and ,S j  and K Rij !

+  is a gain that can be freely tuned. 
Such a weight aims at providing a measure of the average 
time necessary for traveling from Si  to .S j  In fact, it is pro-
portional to the distance between the sectors and to the 
traffic.

These weights can then be utilized for mission assignment. 
In particular, the proposed methodology consists in  
exploiting the Hungarian algorithm that represents the opti-
mal algorithm for solving the assignment problem [23]. Gen-
erally speaking, the Hungarian algorithm solves the problem 
of assigning a certain number of activities (i.e., the missions) 
to a certain number of agents (i.e., the AGVs). In the pro-
posed methodology [24], the cost is determined based on the 
edge weights defined in (2), which considers both the 
 distance and the current traffic condition.

Subsequently, coordination on the top layer consists in defin-
ing, for each AGV, the sequence of sectors to be visited to reach 
the destination. The D* algorithm [25] is utilized to compute the 
sequence of sectors, for each AGV, on the weighted graph .GT  
Every x  seconds, weights are computed according to (2),  

(a) (b) (c)

Global Live
View

Figure 4. The differences among local and global sensing capabilities. (a) The different objects in the environment, (b) local sensing, 
and (c) global information from the cloud system.
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and the graph GT  is subsequently updated. The D* algorithm 
is then utilized for searching the best path on GT  for each AGV.

Bottom Layer
The bottom layer considers the environment from a micro-
scopic point of view. Within each sector, motion of the AGVs 

needs to be coordinated to guarantee avoidance of deadlocks 
and collisions. The objective is to assign a path to each AGV 
in such a way that it can reach the following planned sector 
(from the top layer coordination).

Because the coordination takes place only within a sector, 
it can be computed utilizing local information only. This 
guarantees a significant complexity reduction with respect to 
considering the entire road map. Hence, within each sector, 
the path for each AGV is defined along the road map utilizing 
the standard A* algorithm [26]; this choice is due to the fact 
that the road map is fixed, and local dynamic changes are not 
considered.

(a) (b)

(c) (d)

Figure 5. The local path-planning experiment. (a) The AGV detects an obstacle on its path and sends a request to the global live view. 
(b) The local deviation path has been computed, and the AGV starts the maneuver to overtake the obstacle. (c) The local deviation 
path drives the AGV to go around the obstacle. (d) Once the obstacle has been overcome, the AGV returns to the original path. 

Algorithm 1: Coordination on the Bottom 
Layer

 1 if request true, :i q =6 @  then
 2    if k i7 !  such that request true,k q =6 @  then
 3    Negotiation (Algorithm 2);
 4    else
 5    winner: ;AGV i =6 @
 6    end
 7   if statuswinner and freeAGV i Aq= =6 6@ @   

then
 8    move;
 9    request  false, : ;i j =6 @
10    else
11     stop;
12     go to line 1;
13    end
14 end

Algorithm 2: Negotiation algorithm

 1 if pr AGV i Aq
p1^ h6 @  then

 2  pr ;: AGV iAq
p
= ^ h6 @

 3 end
 4 if pr AGV i Aq

p2^ h6 @  then
 5  return;
 6 end
 7 if pr AGV i Aq

p=^ h6 @  then
 8  winner;:AGV i =6 @
 9  return;
10 end
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Conflicts exist in the case of multiple AGVs assigned to 
simultaneously occupy the same segment. This can happen in 
the intersection areas, namely, areas where multiple segments 
intersect. Conflicts are solved considering the intersections as 
resources to be allocated. Each resource is then allocated only 
to a single AGV to avoid conflicts. To avoid deadlocks (i.e., 
two or more vehicles block each other, and none of them can 
 proceed), a negotiation mechanism is utilized.

The overall bottom layer coordination procedure is sum-
marized in Algorithms 1 and 2. In these algorithms, the term 
pos AGV i^ h6 @  represents the position of the thi  AGV, and 
the term request ,i q6 @ represents the request of the thi  
AGV for the allocation of the thq  intersection area. The term 
pr AGV i^ h6 @  is the value of the priority of the thi  AGV, and 
Aq

p  is the value of the priority of the AGV that is winning the 
current negotiation for the intersection area .q

Local Deviation from the Road Map
In current state-of-the-art AGV systems, no local deviation 
from the predefined road map is allowed. When an AGV gets 
stuck on a segment, it has to wait until the obstacle has been 
removed. This is not efficient and is very time consuming for 
the whole system. Thus, we developed an algorithm to over-
come this issue. Based on the obstacles’ positions and on the 
characteristics of the road map, opportune deviations are 
computed, utilizing the algorithm detailed in [27], to let the 
AGV overcome the obstacle. It is worth noting that onboard 
sensors are not sufficient for safely performing local devia-
tions, because industrial environments include several blind 
spots. For this reason, onboard sensing is complemented with 
centralized information from the cloud system. Specifically, 
when an AGV detects an obstacle on its path (based on 
onboard sensing), it sends a request to the cloud system, 
which then provides the AGV with the list of obstacles in its 
surroundings. The local deviation is then computed only if no 
dynamic obstacles are present and there is a sufficient amount 
of free available space.

Experimental validation was carried out in an industrial 
environment with an AGV controlled to overtake a fixed 
obstacle on the ground. Snapshots of a representative run of 
the experiments are shown in Figure 5.

Conclusions
This article presents a system-level overview of the main tech-
nological developments achieved by the PAN-Robots Europe-
an project. In particular, the article mainly focuses on 
advanced sensing systems and coordination techniques.

The advanced sensing system, composed of onboard and 
infrastructure sensors, leads to increasing the awareness of 
the AGVs. While traditional sensing systems, based only on 
laser scanners, are suitable for guaranteeing safety, those 
advanced techniques provide the AGVs with classification 
capabilities, thus making it possible to make high-level deci-
sions in dynamic environments. This represents a mandato-
ry step toward massive deployment of AGVs in environments 
shared with human operators. Furthermore, traffic-aware 

mission assignment and motion coordination lead to increas-
ing the overall system performance, even in highly cluttered 
and dynamic environments, because traffic congestion is 
heavily reduced.

Even though these results represent a significant improve-
ment with respect to the industrial state of the art, several 
aspects of AGV systems can still be improved. For instance, 
coordination among heterogeneous entities has not been con-
sidered; other vehicles are treated by AGVs as dynamic obsta-
cles. Including other dynamic entities into the coordination 
algorithm would lead to the possibility of including, in the 
same system, AGVs from different manufacturers or AGVs 
designed to perform different tasks (e.g., different size, differ-
ent end effector, etc.).

The proposed coordination techniques require the pres-
ence of a centralized control unit that acquires position 
information from the AGVs, computes the traffic model, 
and defines the motion coordination. AGVs need to con-
stantly communicate with such a centralized control unit; 
hence, the system is not robust to loss of the communica-
tion network. However, it is worth noting that centralized 
information is needed only for the coordination on the top 
level. Future work will aim at implementing the coordina-
tion on the bottom level in a totally decentralized  
manner, thus making it necessary to communicate with the 
central control unit only sporadically when leaving  
a sector.

Moreover, the proposed sensing techniques require illu-
mination, because they are based on cameras. While 
 illumination is always active in the presence of human 
operators, there might be applications in which the 
 presence of illumination is not required. These kinds of 
applications could then largely benefit from alternative 
sensing technologies (e.g., infrared).
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